Aspherical manifolds with relatively hyperbolic fundamental groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aspherical Manifolds with Relatively Hyperbolic Fundamental Groups

We show that the aspherical manifolds produced via the relative strict hyperbolization of polyhedra enjoy many group-theoretic and topological properties of open finite volume negatively pinched manifolds, including relative hyperbolicity, nonvanishing of simplicial volume, co-Hopf property, finiteness of outer automorphism group, absence of splitting over elementary subgroups, acylindricity, a...

متن کامل

Relatively hyperbolic Groups

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a boun...

متن کامل

Relatively Hyperbolic Groups with Rapid Decay Property

We prove that a finitely generated group G hyperbolic relative to the collection of finitely generated subgroups {H1, . . . , Hm} has the Rapid Decay property if and only if each Hi , i = 1, 2, . . . ,m, has the Rapid Decay property.

متن کامل

Injectivity Radius and Fundamental Groups of Hyperbolic 3-manifolds

It is shown that for each integer n > 1 there exists a constant Rn > 0 such that if M is a closed hyperbolic 3-manifold with Rank π1(M) = n, then the injectivity radius of M is bounded above by Rn.

متن کامل

Growth of relatively hyperbolic groups

We show that a relatively hyperbolic group either is virtually cyclic or has uniform exponential growth. Mathematics Subject Classification(2000). 20F65.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2007

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-007-9199-8